Resting state data from E. Allen, et al, “A baseline for the multivariate comparison of resting state networks,” Frontiers in Systems Neuroscience, vol. 5, p. 12, 2011.

T-maps of all 75 components

T-maps of 28 resting state networks. See Network Labels

Aggregate ICA components

Resting state data from E. Allen, E. Damaraju, S. M. Plis, E. Erhardt, T. Eichele, and V. D.Calhoun, “Tracking whole-brain connectivity dynamics in the resting state”, Cereb Cortex, Nov 2012.

Aggregate ICA components

T-maps of all 100 components See Component Labels

Composite T maps of 7 groups resampled to 1mm^3 space and their labels.

Mean ICA components from Stevens, V. D. Calhoun, G. D. Pearlson, and K. A. Kiehl, “Brain network dynamics during error commission,” Hum.Brain Map., vol. 30, pp. 24-37, 2009

Resting State Aggregate ICA maps used in papers:

  • B. Rashid, E. Damaraju, G. D. Pearlson and V. D. Calhoun, “Dynamic connectivity states estimated from resting fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects”, Front Hum Neurosci. 2014; 8: 897.
  • B. Rashid, M. Arabshirani, E. Damaraju, M. Cetin, R. Miller, G. D. Pearlson and V. D. Calhoun, “Classification of schizophrenia and bipolar patients using static and dynamic resting-state fMRI brain connectivity”, NeuroImage, Volume 134, 1 July 2016, Pages 645-657.

Neuromark_fMRI_1.0 network template and respective network labels

  • Z. Fu, J. Sui, R. Espinoza, K. Narr, S. Qi, M. S. E. Sendi, C. C. Abbott, V. D. Calhoun. “Whole-brain functional connectivity dynamics associated with electroconvulsive therapy treatment response”, Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 7 (3), 2022, 312-322.
  • Z. Fu, Y. Tu, V. D. Calhoun, Y. Zhang, Q. Zhao, J. Chen, Q. Meng, Z. Lu, L. Hu. “Dynamic functional network connectivity associated with post-traumatic stress symptoms in COVID-19 survivors”, Neurobiology of stress 15, 100377, 2021.
  • K. Li, Z. Fu, X. Luo, Q. Zeng, P. Huang, M. Zhang, V. D. Calhoun. “The influence of cerebral small vessel disease on static and dynamic functional network connectivity in subjects Along Alzheimer’s disease continuum”, Brain connectivity 11 (3), 2021, 189-200.
  • Z. Fu, A. Iraji, J. A. Turner, J. Sui, R. Miller, G. D. Pearlson, V. D. Calhoun. “Dynamic state with covarying brain activity-connectivity: on the pathophysiology of schizophrenia”, Neuroimage 224, 117385, 2021.
  • Y. Tu, Z. Fu, C. Mao, M. Falahpour, R. L. Gollub, J. Park, G. Wilson, V. Napadow, et al. “Distinct thalamocortical network dynamics are associated with the pathophysiology of chronic low back pain”, Nature communications 11 (1), 1-12, 2020.

Large ICA networks used in paper A. Iraji et al., “The spatial chronnectome reveals a dynamic interplay between functional segregation and integration”, HBM, 2019.

Autism Aggregate ICA map and labels used in paper:
Z. Fu, Y. Tu, X. Di, Y. Du, J. Sui, B. B. Biswal, Z. Zhang, N. de Lacy, V. D. Calhoun, “Transient increased thalamic-sensory connectivity and decreased whole-brain dynamism in autism”, Neuroimage 190, 2019, 191-204

Data visualization in the neurosciences: overcoming the curse of dimensionality. Click here for more information

  • E. A. Allen, E. B. Erhardt, V. D. Calhoun. “Data visualization in the neurosciences: overcoming the curse of dimensionality”, Neuron, 74(4), 603-608, 2012.

Filtered Sliding Window Correlation. Please see Victor M. Vergara, PhD and Vince D Calhoun, PhD, “Filtered Correlation and Allowed Frequency Spectra in Dynamic Functional Connectivity”, Journal of Neuroscience Methods, July 2020.

Designed & Developed by ThemeXpert